PHOTOCHEMISTRY OF HETEROCYCLES. PART IV, PHOTOLYSIS OF THIETE-1,1-DIOXIDES

R.F.J. Langendries, F.C. De Schryver<sup>\*\*</sup> Dept.Scheikunde, Universiteit Leuven, Celestijnenlaan 200 F, B-3030 Heverlee

(Received in UK 25 September 1972; accepted for publication 18 October 1972)

Although the thermal behavior of some thiete-1,1-dioxides (I) has been reported  $^{(1)}$ , few data on their photochemistry have been presented  $^{(2)}$ . We now wish to report some results on the photolysis of the thiete-1,1-dioxides  $I_{a-f}$ .

$$R_{1} \xrightarrow{R_{2}} R_{4} = R_{4} = R_{2} = R_{3} = R_{5} = R_{4} = R_{4} = R_{6} = R_{5}$$
(3)  

$$R_{1} \xrightarrow{R_{2}} R_{3} = R_{1} = R_{2} = R_{3} = R_{3} = R_{3} = R_{4} = R_{4} = R_{6} = R_{5}$$
(4)  

$$d : R_{1} = R_{2} = R_{3} = R_{3} = R_{4} = R_{6} = R_{5}$$
(4)  

$$d : R_{1} = R_{2} = R_{3} = R_{5} = R_{4} = R_{6} = R_{5}$$
(1c)  

$$e : R_{1} = R_{2} = R_{3} = R_{5} = R_{4} = R_{6} = R_{5}$$
(1c)  

$$f : R_{1} = R_{2} = R_{3} = R_{5} = R_{4} = R_{6} = R_{5}$$
(1c)  

$$f : R_{1} = R_{2} = R_{3} = R_{5} = R_{4} = R_{6} = R_{5}$$
(1c)

The unknown derivative  $I_b$  was synthesized from 2-phenyl-3-pyrrolidino-4,4-dimethylthietane-1,1-dioxide <sup>(6)</sup> by oxidative deamination with hydrogenperoxide in glacial acetic acid-acetic acid anhydride. m.p. : 107-108°C; yield : 66%. [IR (KBr) : 1310 and 1120 cm<sup>-1</sup> >SO<sub>2</sub>; n.m.r. (CDCl<sub>3</sub>): 8.3 $\tau$  S 6H, 3.15 $\tau$  S 1H, 2.55 $\tau$  m 5H].

The data of absorption and emission spectrometry of  $\mathbf{I}_{a-f}$  are summarized in table I.

The ultra violet spectra of the mono-phenyl substitutes derivatives correspond very well with the spectrum of 1-phenylcyclobutene [ $\lambda$ max (alc) : 255 nm,  $\varepsilon$ = 13850 ]<sup>(7)</sup>. Therefore, we may suggest that the lowest  $\pi-\pi$ <sup>2</sup> transition in thiete-1,1-dioxides is due to the unsaturated system.

All the photolyses, described here, were carried out, using a Rayonet Type RS Preparative Photochemical reactor, equipped with Rayonet RUL mercury lamps.

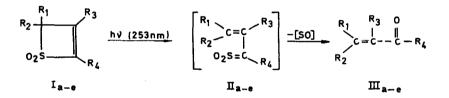
4781

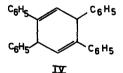
| TABLE 1 | - |
|---------|---|
|---------|---|

| Comp.                                                                   | UV spectrum<br><sup>A</sup> max (nm) [ɛ]<br>solvent : CH <sub>3</sub> CN or CH <sub>3</sub> OH | E <sub>T</sub> (b)<br>Kcal/mole                                        |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| $I_{a}$ $I_{b}$ $(a)$ $I_{c}$ $(a)$ $I_{d}$ $(a)$ $I_{e}$ $(a)$ $I_{f}$ | 257 [25.000]<br>257 [12.000]<br>253 [13.800]<br>261 [13.200]<br>265 [20.000]<br>262 [16.600]   | 63.9 (75.1)<br>64.7 (74.9)<br>64.7 (74.9)<br>(c)<br>(c)<br>60.6 (70.6) |

- (a) Weak fluorescence could be obtained from these compounds ( $\phi_{\rm f}$   $\sim$  0.016)
- (b) Energy of the triplet excited states. Calculated from the maximum of the unstructured phosphorescence spectra at 77°K (solvent : EPA). The values between brackets are calculated from the onset of the spectra.
- (c) No phosphorescence was observed from these compounds.

Irradiation of a degassed solution of  $I_a$  in acetonitrile or dichloromethane at 253 nm gave chalcone (benzylidene acetophenone) III<sub>a</sub> as the main organic reaction product (> 95%) [IR (KBr) : 1660 cm<sup>-1</sup> C=0; n.m.r. (CDCl<sub>3</sub>) : 1.9 -2.7  $\tau$  m 12H]; m.p. 54-55°C (lit.: 54-55°C). A second reaction product was isolated (<5%) and identified by mass spectrometry as the tetraphenylcyclohexadiene IV [M<sup>+</sup>: 384; basic peak : m/e = 192 (Ph-CH-CH=C-Ph)<sup>+</sup> or M<sup>++</sup>.]


The photolysis of  $I_b$  in acetonitrile at 253 nm yielded isobutenylphenylketone  $III_b$  as the only reaction product [IR (liq.) : 1660 cm<sup>-1</sup> C=O; n.m.r. (CDCl<sub>3</sub>) : 7.9  $\tau$  d 6H; 3.4 $\tau$  s 1H; 2.9-2 $\tau$  m 5H].


After irradiation of I<sub>c</sub> in acetonitrile at 253 nm, a polymeric substance, which could be characterized as the polymer derived from acrylophenone III<sub>c</sub> was isolated [IR (KBr) : 1680 cm<sup>-1</sup> >C=O; n.m.r. (CDCl<sub>3</sub>) : 2.7 $\tau$  m 5H; two broad peaks at 6 $\tau$  1H and 7 $\tau$  2H].

Irradiation of  $I_d$  in acetonitrile at 253 nm yielded 1-phenyl-propane-1,2-dione, the stable keto-form of  $III_d$ , as the only reaction product [IR (liq.) : 1710 and 1670 cm<sup>-1</sup> >C=O; n.m.r. (CDCl<sub>3</sub>); 7.48 $\tau$ S3H; 1.8-2.6 $\tau$  m 5H].

Column chromatography of the irradiated solution of  $I_e$  in acetonitrile at 253 nm (adsorbens : silicagel; eluens : benzene) also yielded 1-phenylpropane-1,2-dione which is probably formed by hydrolysis on the column of 1-ethoxyacrylophenone III\_e.

From these results , one may conclude that all derivatives of thiete-1,1-dioxides studied here, react in an analogous way. One can assume that, on irradiation, an electrocyclic ring opening occurs, with the formation of a sulfene II, which decomposes immediately into the unsaturated ketone by loss of sulfurmonooxide <sup>1b,c; 8)</sup>. In the case of I<sub>a</sub>, however, a second fragmentation path is the loss of sulfurdioxide and dimerization of the intermediate thus formed, yielding a small amount of IV.





The intermediacy of a vinylsulfene in the photolysis of  $I_c$  was previously <sup>(2)</sup> excluded on the basis of lack of i.r. spectroscopic evidence under their experimental conditions but could be substantiated in the photolysis of  $I_f$  in methanol at 253 nm. The sulfonic ester V was isolated as the only reaction product [IR (liq.) : 1355 and 1177 cm<sup>-1</sup> -SO<sub>2</sub>O-; n.m.r. (CDCl<sub>3</sub>) : 3.6\tau s 3H, 4.2\tau s 2H; 5.6\tau d 2H; 7.4\tau m 5H].

$$I_{f} \xrightarrow{hv (253 \text{ nm})} CH_2 = C - CH_2 - SO_2 OCH_3 V$$

Quantum yields of disappearance of  $I_a$  and  $I_b$  were measured by n.m.r. spectrometry in dichloromethane using Dow Corning silicone grease as internal standard (9). The values for  $I_a$  and  $I_b$  are 0.001 and 0.004 respectively. The quantum yield of disappearance of  $I_f$  in methanol, measured spectrophotometrically, was found to be 0.045.

When the photolyses of  $I_a$  and  $I_b$  in acetonitrile and of  $I_f$  in methanol were carried out at 350 nm, using benzophenone or acetophenone as sensitizer (equal concentrations for donor and acceptor) the same reaction products as in the direct irradiations were obtained.

## REFERENCES

- (1) a. J.F. King, K. Piers, D.J.H. Smith, C.L. Mc Intosh, P. De Mayo, Chem. Comm., 31 (1969)
  - b. C.L. Mc Intosh, P. De Mayo, Chem. Comm., 32 (1969)
  - c. J.F. King, P. De Mayo, C.L. Mc Intosh, K. Piers, D.J.H. Smith, Can.J.Chem. 48 3704 (1970)
- (2) O.L. Chapman, XXIII rd. International Congress of pure and Applied Chemistry Boston, USA, 1971, Vol.1, p.311. Ed. Butterworths London.

```
(3) D.R. Eckroth, G.M. Love, J.Org.Chem., 34, 1136 (1969)
```

(4) J.N. Wells, F.S. Abbott, J.Med.Chem., 9, 489 (1966)

```
(5) W.O. Siegl, C.R. Johnson, J.Org.Chem., 35, 3657 (1970)
```

```
(6) G. Opitz, H. Schempp, H. Adolph, Ann., <u>684</u>, 92 (1965)
```

```
(7) J.W. Wilt, D.D. Roberts, J.Org.Chem., 27, 3430 (1962)
```

```
(8) J.F. King, P. De Mayo, D.L. Verdun, Can.J.Chem., 47, 4509 (1969)
```

(9) J.A. Kapecki, J.Chem.Educ., <u>48</u>, 731 (1971)